Skip to content

Contents

  1. Introduction

    • Overview
    • What is DFT
    • Install QE
    • Exercise: Getting started
  2. Productivity tools

    • Ubuntu command
    • JupyterLab
    • Exercise: Crystal hardness
  3. Hands-on tutorials of QE I: Basics parameters

    • Terminology
    • Learning by example
      • Supervised
      • Unsupervised
      • Reinforcement
    • Exercise: Crystal hardness
  4. Hands-on tutorials of QE II: Electronic properties

    • Data sources and formats
    • API queries
    • Exercise: Data-driven thermoelectrics
  5. Hands-on tutorials of QE III: Phonon properties

    • Compositional
    • Structural
    • Graphs
    • Exercise: Navigating crystal space
  6. Hands-on tutorials of QE IV: Optical properties

    • k-nearest neighbours
    • k-means clustering
    • Decision trees and beyond
    • Exercise: Metal or insulator?
  7. Hands-on tutorials of QE V: Subjects for 2D materials

    • From neuron to perceptron
    • Network architecture and training
    • Convolutional neural networks
    • Exercise: Learning microstructure
  8. Hands-on tutorials of QE VI: Wannier90

    • Data preparation
    • Model choice
    • Training and testing
    • Exercise: Crystal hardness II
  9. Special topic I: QERaman - Raman spectra calculation

    • Automated experiments
    • Bayesian optimisation
    • Reinforcement learning
    • Exercise: Closed-loop optimisation
  10. Special topic II: Applications of DFT in materials research

    • Large language models
    • From latent space to diffusion
    • Exercise: Research challenge